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Abstract—In 2014, P.S. Krasnoshchekov, Academician at the Russian Academy of Sciences, offered
A.A. Belolipetskii to continue research on the collective behavior of people by generalizing his earlier
static model to the dynamic case. For this reason, this work is regarded as a tribute to commemorate
Krasnoschekov, an outstanding scientist. The fundamental quantitative model Krasnoshchekov pro-
posed in his works studied a static model of collective behavior when people can change their original
opinion on a subject after one stage of informational interaction. Opinions are assumed to be alterna-
tives. A person can support his country to join the WTO with probability  and object to it with prob-
ability . In this work, multistep opinion exchange processes are considered. Quantitative charac-
teristics of values of probabilities  (of people’s opinions) are obtained as functions of the step number
and the rate of change of these probabilities. For instance, the way the mass media can control the
opinions of their target audience if this audience has certain psychological characteristics is studied.
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INTRODUCTION
The past three decades have seen vigorous growth in research on the collective behavior of people in

various situations [1–12]. Some of the works consider the psychological and sociological aspects of col-
lective behavior, while others focus on quantitative estimates that describe the behavior of individuals and
groups on the whole.

We briefly describe a static model of collective behavior proposed by Krasnoshchekov in [1–3]. Sup-
pose a decision maker (DM) can make one of two  alternative decisions. The probability that the
th individual, , makes decision number  is , while it is  for .

Suppose  is the individualism coefficient of the th DM. For , this DM is absolutely indepen-
dent and cannot be made to change his/her mind. For , the DM is an absolute conformist who
changes his/her mind to please another opinion. Suppose  is the probability that the ith DM
makes decision  after talking to the jth DM given that the jth DM sticks to alternative . Then, for
the absolute conformist ( ), we can write the probability that after talking to the group he/she makes
decision  by the formula of total probability as

.

Obviously,  since his/her own opinion has no weight for the conformist and if all , then

 (the group will always persuade the conformist to accept the point of view of the “society”). Hence,
. If the th DM is independent in making a decision ( ), the respective

probability will equal some a priori probability . For the intermediate values , it makes sense
to calculate the a posteriori probability in the form of a convex combination

.
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1. STATEMENT OF THE PROBLEM AND PROPERTIES OF ITS SOLUTIONS

We generalize the static model described above. If we assume the variables  to be functions of con-
tinuous time t, we can write the model described above as a system of differential equations

.

The substantiation and properties of this system are studied in [11]. One can easily see that the station-
ary solutions of this system satisfy the equations of Krasnoshchekov’s static model.

Below, we consider its dynamic aspect. To do this, we put time (step) to be discrete 
and assume that the a priori solution at this step equals the a posteriori value obtained at the previous step.
For the sake of brevity, we write  instead of  in what follows. Now, the model takes the form of a
system of linear homogeneous difference equations

, , (1.1)

with the parameters

. (1.2)

Find the functions  for the given initial conditions , .
In [1], two examples (negotiations and elections) were considered, where the particular cases of

dynamic relations (1.1) were studied. Below, we obtain the general properties of solutions of system (1.1).
Suppose

, ;

is a diagonal matrix, is the unity matrix, and the parameters . Then, we can write sys-
tem (1.1) in the vector form

(1.3)

where
. (1.4)

Definition 1. A quadratic matrix  is called decomposable if one can use simultaneous per-
mutation of its rows and columns to represent it in the block-triangular form

,

where .

Proposition 1. If the matrix  is decomposable, the matrix  is decomposable and

.

The proof follows from Definition 1.
Proposition 2. If all , matrix (1.4) is indecomposable.

Proof. Suppose  is an arbitrary element of the matrix  that is at the intersection of the th row and
th column. It follows from (1.4) that

.
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It follows from (1.2) and the proposition hypothesis that . This and Proposition 1 leads to the
validity of the proposition.

Theorem 1 (Perron–Frobenius). If  is indecomposable and nonnegative (i.e., all its elements are non-
negative), it has the eigenvalue  such that for any other eigenvalue   holds and the respective
right eigen column vector  and the left eigen row vector   are positive
(i.e., their components are positive).

For the proof of the theorem, see, for instance, [13, 14].
Definition 2. The eigenvalue  is called the Frobenius number and the vectors  are called

the right and left Frobenius vectors.
Suppose

, where .

Proposition 3. If  is indecomposable and nonnegative, its Frobenius number  for .
If , then .

One can find the proof in [14].
Definition 3. We call the nonnegative matrix  productive if there exists a nonnegative matrix

.
Proposition 4. A nonnegative indecomposable matrix  is productive if and only if its Frobenius num-

ber .
For the proof, see [14].
Proposition 5. If , the Frobenius number of matrix (1.4) is less than the unity.
Proof. The sum of the elements of the th row of matrix (1.4) is 

. Hence,

.

If , it follows from Proposition 3 that . If , then all . Then, the
equality  follows from Proposition 1.3.

Lemma 1. If all parameters , system of equations (1.3) and, hence, system (1.1) are
unambiguously solvable and the recurrent relations hold

. (1.5)
If, in addition, , then .

Proof. It follows from the hypotheses of this lemma and Proposition 2 that the nonnegative matrix 
is indecomposable, and we can conclude from Proposition 5 that its Frobenius number  is less than
unity. Then, Proposition 4 ensures the matrix  is productive, i.e., Eq. (1.3) has solution (1.5).

For arbitrary , we denote 

 .

Lemma 2. For any positive matrix , with the sum of its elements in any row
equaling the unity and all its diagonal elements being zero, and the values of the parameters

, the solutions of Eq. (1.1) are such that the following inequalities
hold:

(1.6)

Moreover, there exists  such that the following inequality holds:

. (1.7)

>(2) 0ija

A
λ A λ λ < λ A

Ax ( )= λA A AAx x Ay ( )= λA A AAy y

λ A andA Ax y

= =
= =

1, 1,

min , maxi i
i N i N

r r R r
=

= ∑
1

N

i ij

j

r a

A < λ <Ar R <r R
=r R λ =A R

A

( )−− 1E A
A

λ < 1A

μ + + μ >1 ... 0N

i ( )= − μ λ + λ + λ =…1 2(1 )i i i i iNr
− μ ≤(1 ) 1i

= =
= > = ≤

1, 1,

min 0, max 1i i
i N i N

r r R r

<r R λ < ≤ 1A R =r R = = − μ <1 1ir R
λ = < 1A R

μ + + μ >1 ... 0N

−+ = − Μ1( 1) ( ) ( )k E A kp p

≥( ) 0kp + ≥( 1) 0kp
A

λ A
−E A

= 0,1,2, ...k

≤ ≤≤ ≤
π = π =max min

11
( ) max ( ), ( ) min ( )j j

j Nj N
k p k k p k

( )Λ = λ =, , 1,ij i j N

μ μ ∈ μ + + μ >1 1, ..., [0, 1], ... 0N N

π + ≤ π π + ≥ πmax max min min( 1) ( ), ( 1) ( ).k k k k

ε ∈0 (0, 1)

( )π − π ≤ ε π − πmax min 0 max min( ) ( ) (0) (0)kk k



www.manaraa.com

388

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 3  2017

BELOLIPETSKII, KOZITSIN

Proof. 1. If , then all , . In this case, all
. One can easily check the latter by substituting the values  to

Eqs. (1.1). By Lemma 1, this system is unambiguously solvable, i.e.,  is the unique solution.
Hence, the lemma is obvious.

2. Now, we put . Suppose . We can take .
Indeed, if , we have the equality

from (1.1). By the properties of the matrix , the latter is possible only if all , which
contradicts our assumption. Further, suppose . As we showed above, we can take

. Then, we have from (1.1)

This and the inequality  lead to

. (1.8)

Hence, .

We estimate

This and the inequality  lead to

. (1.9)
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Hence, . Inequalities (1.6) are proved. We summarize the left- and right-hand
sides of inequalities (1.8) and (1.9)

where

.

Hence,  or 

, where . The latter inequality ensures estimate (1.7) holds. The
lemma is proved.

Corollary 1. All values .

Theorem 2. If the hypotheses of Lemma 2 hold and all components , then all components
, .

The proof follows from Lemma 2. In particular, the following corollaries hold.
Corollary 2. If all components , then all components , .

Corollary 3. In the one-step model, where , all values .
We study if system of difference equations (1.1) is stable to the perturbation of the initial conditions.

Suppose,  are the solutions of system (1.1) for the given initial conditions , , and
 are the solutions of system (1.1) for the perturbed initial conditions , .

Theorem 3 (on stability). The solutions of system of equations (1.1) are stable to perturbations of the
initial conditions. In other words, if all perturbations , then all variations

, , .

Proof. Since relations (1.1) are linear, the equations for the variations  have the same form
as (1.1), i.e.,

, .

This and Theorem 2 lead to the hypothesis of Theorem 3.

We consider two matrices  (both of dimension ) and the complex number .

Suppose , where the parameters  can be zero or unity only. We search
for the nontrivial solution of the homogeneous system of linear equations

. (1.10)

This solution exists if and only if

. (1.11)

Characteristic equation (1.11) is an algebraic equation of a degree not higher than . We call the
root  of Eq. (1.11) the generalized characteristic number of Eq. (1.10) and its respective solution  the
characteristic vector of this equation. Obviously, the characteristic vector is given up to the accuracy of a
factor.

Theorem 4. If the sum of the elements of any row of the matrix  equals the sum of elements of the
same row of the matrix , Eq. (1.11) has the root  with its respective characteristic vector , all
components of which are unities.
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Proof. Under our assumptions, the sum of the columns of the matrix  is zero, i.e.,
. Hence,  is the generalized characteristic number of Eq. (1.10). We put x* =

. Then, we can write any of the equations of system (1.10) as

,

i.e.,  is the characteristic vector that corresponds to the generalized characteristic number . The
theorem is proved.

We consider the matrix

. (1.12)

Lemma 3. Matrix (1.2) has the generalized characteristic number  and its respective characteristic
vector . For any number , the matrices  and  satisfy the
hypotheses of Theorem 4.

Proof. The sum of the elements of the th row of the matrix , by (1.4), is

,

and the respective sum of the elements of the matrix  is . For , they coincide. Hence,
Lemma 3 follows from Theorem 4.

Theorem 5. Suppose  is the generalized characteristic number and x is its respective characteristic vec-
tor of matrix (1.12). Then, the function  is the solution of Eq. (1.3).

Proof. Substituting the expression  into Eq. (1.3), we have the system of equations
. Now, the proposition follows from the hypothesis of this theorem.

Theorem 6. All real generalized characteristic numbers of the matrix  are not
greater than unity in modulo and its characteristic vectors corresponding to the characteristic numbers

 must have either components of the opposite signs or zero components.
Proof. 1. Suppose . Since the real characteristic vector  is nontrivial and given up to the accuracy

of a factor, we take its maximal component to be positive. Suppose it is x1. Without loss of generality, its

minimal component is x2. By Theorem 5, . We consider the vectors . Obvi-
ously, their first and second components are maximal and minimal, respectively. By Lemma 2,

. This leads to . The same lemma leads to . This and
the inequality  leads to .

2. If , the maximal component of the vector  is  and its minimal component is . By
Lemma 2, we have . Since , both inequalities lead to . If ,
both inequalities lead to . Since either , or , then .
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matrix (1.12) are eigenvalues and eigenvectors of the matrix
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The proof follows from Lemma 1.
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Proof. We assume the opposite. Then, for the respective characteristic vector , we have  or

. (1.14)

Since  is a nontrivial real vector, we can assume that its maximal coordinate is positive. By reasoning
similar to that used in the proof of Theorem 2, we can show that among maximal coordinates one can find
a coordinate with number  such that . Majorizing the left-hand side of (1.14), we have

 Or . 

The latter is impossible since .
Assumption. The multiplicity of all eigenvalues of matrix (1.13) is unity.

If it is true, they all, together with the vector , form the basis in the N-dimensional
complexified space. Suppose these eigenvalues are  and their respective eigenvectors

are , and . Then, the general solution of Eq. (1.3) takes the form

, (1.15)

where  are arbitrary constants. They are given by the initial conditions

. (1.16)

System of equations (1.16) is solvable due to the reasoning given above. If all eigenvalues 
of matrix (1.13) are real, Theorems 6–8 lead to . This and (1.15) lead to .

2. MODIFICATION OF THE MODEL FOR THE CASE OF DIFFERENT-SCALE REACTION 
TIMES OF GROUP PARTICIPANTS CHANGING THEIR OPINIONS

We write (1.1) as

, . (2.1)

We assume that different members of the group react to a change in their opinion at a different pace.
In other words, there exists at least one individual with the maximal reaction speed, which we take to be
unity. For other members, their individual speed is . Now, (2.1) takes the form

, . (2.2)
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Proof. We rewrite (2.2) as

(2.4)

Here, we used equality (1.2). We put . Then,

.

We substitute these expressions into (2.4) and obtain what we sought.

It follows from Theorem 9 that Eq. (2.3) have the same form (1.1) even for different reaction pace of
individuals to the changes. Hence, this model also preserves the properties of the solutions described in
Section 1.

3. PROBLEM OF COMPETITION OF TWO PARLIAMENTARY GROUPS

Within the theory described above, we consider the following hypothetical problem. Suppose the par-
liament of a country is discussing the enactment of a law that is important for the people of the country,
for instance, the British parliament is discussing Brexit. We assume that the members of parliament are
divided into two groups. One is mostly for enactment, while the other is against it. We call the first group
Labor and the second group Tories. The parliament holds debates on this issue that can consist of several
stages. These debates can change the opinions of the group members. The question is how long it will take
the members of parliament to make the final decision and what their decision is going to be.

To obtain a mathematically significant answer, we divide the group of  parliamentarians into two
subgroups—in the first one, , the group members have  (Labor); in the second one,

, they have  (Tories). The factors of influence of members of both groups on
each other are

(1) for all 

; (3.1)

(2) for all 

. (3.2)

The coefficients . Moreover,  is the factor of influence of the members of the
second group on the opinion of the members of the first group. In other words, the higher the value of 
the higher the probability that a member of the second group will persuade a member of the first group to
his/her opinion. Similarly,  is the factor of influence of the members of the first group on the opinion
of the members of the second group. The following proposition is obvious.

Proposition 6. In the nonnegative matrix , the sum of the elements in any row is
unity and all its diagonal elements are zero.
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We write the difference equations (3.1) and (3.2) as

(3.3)

(3.4)

Below, we consider the following conditions to hold: the parameters μ0,  and .
Then, the system of difference equations (3.3)–(3.4) satisfies the hypotheses of Lemma 1, and, hence, it
has the unique solution for the given initial conditions.

To obtain analytical results, we first assume that all

. (3.5)

We show that the solution of (3.3) and (3.4) has the form

. (3.6)

Indeed, we will search for the solution in form (3.6) with initial conditions (3.5). The equations for 
follow immediately from (3.3)–(3.5)

, (3.7)

, (3.8)

. (3.9)

We can write them in the matrix form as system (1.3)–(1.4), where the matrix

and, hence, system of equations (3.7)–(3.9) can be unambiguously solved. In other words, the solution of
(3.6) with initial conditions (3.9) is the solution of system (3.3)–(3.4) with initial conditions (3.5). Since
the solution to problem (3.3)–(3.5) is unique, the found solution (3.6) is the sought one.

We search specific solutions of system (3.7) and (3.8) in the form

.

To find , we obtain Eqs. (1.10) and (1.11), where

, (3.10)

In what follows, we use the designation . The form of the matrices  leads to
. In other words,  satisfy the hypotheses of Theorem 4; therefore, one

of the roots of the characteristic equation

, (3.11)

, and its respective solution has the form .
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We find the second characteristic number. By Vieta’s theorem, the second root of Eq. (3.11) is
. Since c11 = –c12 – μ0 and , 

. If we exclude the case , it leads to the expression 
. One can easily see that  if  and either

 or .

In what follows, we consider these conditions to hold. The characteristic vector associated with the
generalized characteristic number  has the form

up to the accuracy of a factor. Then, we can write the general solution of system (3.7) and (3.8) as

. (3.12)

We find constants  from initial conditions (3.9). They are

, (3.13)

where . It follows from (3.12) and (3.13) that for  the
function  is monotonically decreasing and  is monotonically increasing, and vice versa for

. For , both functions take equivalent values that are .
If , then . Thus, the value

i.e., it is the convex combination of the initial values .

The mean value of the members of both groups adhering to Labour’s point of view is

Suppose . Then,

.

If  and  is a fixed variable, then ; i.e., if the Tories

do not feel like compromising, then, regardless of the other fixed parameters, they will persuade the oppo-
site party to their opinion ( ). If also , then . Then, the more
convincing group wins. For instance, for  (the Tories are more convincing than Labor), the value

, while the value  for .
We assume that

. (3.14)
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We denote the vectors

, .

Theorem 10. If all , the solution of system (3.3) and (3.4) with initial conditions (3.14) has
the form , with all components being .

The proof follows from Theorem 2.

4. PROBLEM OF PROPHETS AND FALSE PROPHETS
In the problem we consider in this section, we obtain the quantitative characteristics of the influence

of two mass media units on the public. These mass media units are considered to adhere to two opposite
points of view on some issue and stand firm on their beliefs, such as the mass media supporting candidates
of the Democratic or Republican Parties in the US election campaign. We call one mass media unit a
Prophet and the other one a False Prophet. Suppose

(4.1)

for  people. We add two more participants, i.e., a Prophet with  and number 0 and a
False Prophet with  and number 00. The other participants have values

. We consider the process to be evolving in time and
. Obviously, . Then, Eqs. (1.1) take the form

(4.2)

Proposition 7. For any , solutions of system (4.2) .
The proof follows from Corollary 1 to Theorem 2.
We use  to denote the mathematical expectation of the number of

people supporting the Prophet’s idea at the th step. To obtain the equation for , we add the terms
 to both sides of Eqs. (4.2) and sum them. We have

or

. (4.3)

We use  to denote the fraction of people that share the Prophet’s idea. Then, we
can rewrite Eq. (4.3) in new variables

. (4.4)

Suppose
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In this case, the recurrent equation (4.4) takes the form , the solution of which is
 or

. (4.6)

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
����� �������

1 1

T

1 1 2 2( ) ( ), ..., ( ), ( ), ..., ( )
N N N

k P k P k P k P kP ( )δ = δ δ T
1( ) ( ), ..., ( )Nk p k p kP

δ <(0) 1jp
+ ε δ ∈( ) ( ) [0, 1]k kP P δ <( ) 1ip k

− Λ − Λλ = λ = ≠ λ = Λ ≥ Λ ≥ Λ + Λ <
−

0 00
0 00 0 00

1 , , 0, 0, 0, 1
1ij iii j

N
N α = μ =0 01, 1

α = μ =00 000, 1
α ∈ μ = μ ∈ =(0, 1), (0, 1), 1, 2, ...,i i i N
α + = ∈ =( 1) ( ), (0) [0, 1], 1,i i ik p k p i N ≡ ≡0 00( ) 1, ( ) 0p k p k

( )

=

+ = μ + − μ Λ ⋅ + Λ ⋅

+ − μ λ + =∑

0 00

1

( 1) ( ) (1 ) 1 0

(1 ) ( 1), 1, .

i i
N

ij j

j

p k p k

p k i N

= 0, 1, ...k ∈( ) [0, 1]ip k

= + +…1 2( ) ( ) ( ) ( )NM k p k p k p k
k ( )M k

− μ λ +(1 ) ( 1)ip k

+ + − μ λ + = μ + − μ Λ + − μ λ +0( 1) (1 ) ( 1) ( ) (1 ) (1 ) ( 1)M k M k M k N N M k

μ + − μ Λ+ =
− − μ − Λ − Λ

0

0 00

( ) (1 )( 1)
1 (1 )(1 )

M k NM k

β = ∈( ) ( )/ [0, 1]k M k N

μβ + − μ Λ μβ + − μ Λβ + = =
− − μ − Λ − Λ μ + − μ Λ + Λ

0 0

0 00 0 00

( ) (1 ) ( ) (1 )( 1)
1 (1 )(1 ) (1 )( )

k kk

− μ Λμ= < = <
μ + − μ Λ + Λ μ + − μ Λ + Λ

0

0 00 0 00

(1 )1, 1
(1 )( ) (1 )( )

q b

β + = β +( 1) ( )k q k b
β = β + − −( ) (0) (1 )/(1 )k kk q b q q

⎡ ⎤β = + β −⎢ ⎥− −⎣ ⎦
( ) (0)

1 1
kb bk q

q q



www.manaraa.com

396

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 3  2017

BELOLIPETSKII, KOZITSIN

It obviously follows from (4.5) and (4.6) that . Note that func-

tion (4.6) is increasing for  and monotonically decreasing for
. Thus, if the Prophet is more convincing than the False Prophet ( ), the

fraction of his/her followers . In particular, if , then ; i.e., everyone
who heard him speaking will follow the Prophet. The growth rate of the number of the Prophet’s followers
depends on their individualism coefficient . Thus, for , the value . In other
words, just for one miracle showed by him all atheists ( ) become believers to a reasonable extent
and for  they become absolute followers of the Prophet. We put . Suppose . Then,
we have the inequality . We put

, then . Hence, after seven steps (disclosed miracles), 99% of the
people are ready to follow the Prophet.

CONCLUSIONS

We proposed a multistep model of the collective behavior of people that generalizes Krasnoshchekov’s
static model. The model has the form of a linear homogeneous system of difference equations. We studied
the mathematical properties of the solutions of this system. In particular, we showed that for a sufficiently
large number of stages of an exchange of opinions the group members come to one decision given by the
initial conditions. We gave examples of solving two problems (a) on the competition of two groups in par-
liament and (b) on the influence of the mass media on what people think about an issue.
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